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ABSTRACT

In this paper we introduce a general framework
for an image based autonomous rock detection
process for Martian terrain. A rock detection
algorithm, based on this framework, is described
and demonstrated on examples of real Mars
Rover data. An attempt is made to produce a
system that is independent of parameters to
ease on-board implementation for real time in-
situ operation. The process utilizes unsupervised
hierarchical approaches for object detection and
is easily expandable to more complex data sets.
Currently, it uses intensity information to detect
small rocks and range information (derived from
a pair of intensity images) to detect large rocks
in the image. The range-based and intensity-
based algorithms tend to be complimentary, with
one working when the other fails, together they
detect most of the rocks in Mars images. The
Rock Detection System presented in this paper
is one module in autonomous exploration
system. This module closes the loop between
data acquisition, data analysis and decision-
making in situ. It can be used to prioritize what
information will be sent back to Earth, where to
take more scientific measurements using more
time-consuming instrumentation, and which
surface regions to explore further. In this manner
the system contributes to reducing data downlink
and maximizing science return per bit of data.

INTRODUCTION

Recent developments in technology have
increased the gap between the ability of the
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instruments to collect the data, and the capacity of
data downlink. Currently, we are capable of
collecting much more data than we are capable of
returning to Earth. Spacecraft and telemetry
limitations place severe constraints on the scope of
possible scientific return. However the continued
growth of computing resources allows for the scope
of planned investigations to be enlarged significantly
beyond those considered in the past by maximizing
scientifically important information content per bit of
downlinked data. This is achieved through
autonomous in-situ scientific data analysis. In this
analysis scientific requests and reasoning behind
scientific data analysis are coded into computer
algorithms, which transform scientific intuition into an
autonomous on-board system capable of directing
the mission along the way of most scientific research
in-situ, without heavy downlink or significant time
delay. Good examples of missions where in-situ
processing enables major increase in scientifically
valuable data return are Mars surface exploration
missions.

To a geologist, rocks provide clues for the paleo-
history of the planet. Depending on the type and
distribution of rocks (e.g. igneous, sedimentary, or
metamorphic) found, a scientist can deduce what the
area was like the time the rocks were being formed
and deposited. By understanding the physical
parameters such as the temperature and pressure,
and the distribution of the materials on the surface,
the environment the rock was created in (e.g.
atmospheric conditions, interior conditions, surface
conditions, etc) can be identified. All of these
parameters can be recognize by looking at the
physical properties and location of the rocks. For
example, igneous rocks with large crystals can
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identify the depth of formation; the larger the
crystal, the longer it takes for the rock to cool
from the magma. In-situ volcanic rocks on the
surface can indicate not only a source region,
but can also be used to distinguish the size of
the volcanic body, volatile content and discharge
rate.

Rocks can also explain the post-formational
history (or secondary history) of the region. This
history tells us what has happened to the rock
since it was formed including such things as the
effect of climate (i.e. weathering) and erosion
and whether the rock has been transported. A
sedimentary rock, a rock formed either by water,
wind, or ice deposition, can identify the mode of
deposition and how far the material has been
carried just by the physical shape (or rounding)
of particles. Angular fragments indicate that the
source area is nearby; whereas a highly rounded
particle indicates a large distance of transport.
Rocks that form because of impacting can tell us
the temperature of formation and the
environment prior to impact. Therefore, a
scientist can gain a tremendous amount of
information just by looking at the distribution and
the physical properties of rocks.

In future Mars surface exploration missions both
mobile robotic platforms and landers will have
the capability of collecting more sensor data than
can be transmitted to earth. It will be critical that
these platforms are capable of analyzing
information onboard and selecting data that is
most likely to vyield valuable scientific
discoveries. In this paper, we describe a system
that can be used to focus efforts on regions in a
scene that are of interest to the scientists. At the
most basic levels such regions are the ones
where high-priority targets are identified. We
describe methods that will enable a rover to
identify and statistically characterize possible
targets by identifying rocks in an image.

Image data is of particular interest for scientists.
Cameras are a common instrument for data
collection (the MER rovers scheduled for launch
in 2003 will have ten cameras onboard).
Cameras are inexpensive instruments in terms
of both time and energy to collect data, but are
very demanding in terms of storage space or
transmission bandwidth. It is evident that
images are an example of data in which more
can be collected than can be stored or
transmitted to Earth. Further, image data is very

rich in information content and can provide a great
deal of insight about the planetary surface.

ON-BOARD SYSTEM CONFIGURATION

In the past, our research has focused on a variety of
autonomous science processing systems, which
were based on different scientific goals. Some of
these systems required algorithm training and
labeling of objects, which has to be done by
scientists on Earth. Such systems upload compact
feature recognizers produced by scientists, then
using these recognizers they detect features of
scientific interest in image data and downlink only
the scientifically interesting data to Earth. An
example of such system is described in the downlink
report ", which provides feasibility and cost
efficiency estimates of an on-board science feature
extraction module. This system incorporates
supervised-learning techniques and will be explained
in next section.

Other systems require more or less frequent
parameter settings, which are also done manually on
Earth. Two examples are the autonomous change
detection software? integrated within the context of
Mars orbiter simulation and the autonomous satellite
(small-body) detection algorithm®'" implemented in
mission simulator performing autonomous repointing
for close observation of satellite. The latter system
was incorporated within our Flight System Testbed,
which  supported communication of science
processing software with an autonomous camera
controller and planner. All these systems require
real-time interactions with Earth for either training or
parameter setting. In this paper we will introduce a
framework, which stresses systems independence of
the parameters and of real time interaction with
Earth-based scientists.

Such systems are often imposed onto missions with
limited DSN availability. The less DSN
communication necessary, the easier the integration
of the science-processing module within the
spacecraft and the simpler and cheaper the mission
design and implementation are. In the design of a
spacecraft system, one should strive for full
autonomy and limit the number of exports as much
as possible. Such a goal will not only reduce the load
on the communication network (downlink and uplink),
but will also insure system operations during times
when the network is not available (often a significant
amount of time). Here we attempt to develop a Mars
Rock Detectort hat is a parameter-independent (or
fully autonomous) system for use on the surface of
Mars.
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The Rock Detection System presented in this
paper is only one module in the autonomous
exploration system. This module is in the loop
between data acquisition, data analysis and
decision-making in real time on board the
spacecraft. (Figure 1). Some of the decisions

may involve camera repointing or replanning of
optimal rover path in order to further investigate
objects of interest. They also can involve significant
data reduction, where non-interesting or repetitive
data is ignored, and only the statistical summaries of
most regions along with the details of scientifically
interesting regions are downlinked to Earth.

Candidate region

to explore

S5

camera
conirols

commands

ground
commands

commands
to downlink

scientifically interesting rocks and summary information

Figure 1. An example of autonomous exploration system.

THE PROCESS OF DETECTING ROCKS

Background and goals

There are many methods for recognizing objects
in a scene. Since humans are especially good at
performing this task, many of these methods try
to mimic human visual processing (neural
networks, for example) in their attempt to
recognize patterns®. These types of approaches
fall into the category of supervised learning
techniques, where the probabilistic models (or
other generalized models) of object attributes
(characteristics) are learned from numerous
examples. The same object attributes are then
computed for a new image region, and each
region is characterized based on previously
learned attribute distributions’. These techniques
are good not only for detecting objects, but also
for dividing them into different types specified in
the initial step. These methods are excellent for
creating interactive tools for scientists working
on missions with available downlink/uplink and
with a science team trained on the algorithm.

Nevertheless, in many missions sufficient downlink is
not available to allow science-rover interactions for
science data analysis. For example, in future Mars
rover missions, the path-planning unit (Figure 1) can
be required to plan and replan rovers path and
operations to maximize scientific return real time
without any delays imposed by communications with
Earth. In addition, there could be fleet of rovers
(swarm intelligence) collecting and processmg data,
communicating and reaching decisions®. In these
cases, having humans heavily involved in these
highly synchronized real-time loops is practically
impossible. This is why often in the initial design of
the spacecraft system, stricter system requirements
are required. Such are the requirements for
independent space-vehicle operation and full (or
minimal human-interaction ) autonomy.

Full autonomy can only be approached through
unsupervised techniques. These are the techniques
in which no examples of object data are provided a
priori, and few details and/or parameters are
specified. The major components of an unsupervised
image-processing system are feature extraction and
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clustering). In feature extraction, elementary
components (regions from which features will be
derived) are segmented from the image, and the
features summarizing component characteristics
which are representative of an object’s unique
signature are extracted for every component.
This signature might be represented by a set of
rules acting on the feature or its elementary
components. In clustering, the features are
divided or linked into compact groups based on
data representative distance criterion. By
alternating between feature extraction and
clustering, one can recognize objects in the
scene without heavy dependence on parameters
or prior data analysis.

A feature extraction/clustering loop can be
hierarchical or symmetric. In hierarchical
analysis the process builds more complicated
features from the simpler ones, producing at

Elementary Feature Object Map |,
components |, extraction, (Elementary
(Object Map Clustering components
-1 la1)

I-th iteration
hierarchy

a) Hierarchical object recognition
recognition

Figure 2. General framework for object recognition.

Even though, our current roadmap leads to a
system with very few parameters, we realize that
no system is truly parameter independent or
assumption free. In this study we approach
parameter independence by avoiding extensive
learning techniques and allowing only those
parameters, that either prove to be robust (can
be set once, relying on tolerance of later
algorithm components to changes in this
parameter), can be set automatically (from
image information), or are system mission
dependent and can be set a priori (derived from
camera and mission parameters).

High-level rock signature definition

each step an improved representation of the target
objects until desired accuracy is achieved (Figure 2a
). In each iteration, new elementary components are
represented by objects produced in the previous
iteration. In symmetric analysis (Figure 2b) initial
representations of the scene are depicted with
orthogonal elementary components (orthogonality
implies that detection sets derived from such
components are mostly non-overlapping). These
representations are processed independently, each
recognizing different types of the same objects. Both
hierarchical and symmetric approaches reduce
algorithm dependence on the parameters and
increase the robustness of the algorithms, making
every later component in the processing independent
of changes in parameters in the previous module. In
the system described in this paper we use both
hierarchical and symmetric techniques for object
detection.

Elementary
components |

Elementary
components 1

Feature
extraction,
Clustering

Object Map 1 Object Map |

Final Object
Map

b) Symmetric object

The appearance of rocks in an image varies greatly
from one image to another. Rock texture and color in
normal camera image are affected greatly by camera
view angles, lighting source and weather conditions.
Some rocks can appear flat, grainy, bright or dark
depending on time of the day the image was
acquired. At a basic level, raw image data provides
only partial characteristics of rocks. Nevertheless, in
most cases the texture and intensity of a rock are
distinct from background texture and intensity.
Therefore, we define a primitive rock feature in the
intensity image as a small region with texture and
intensity different from its neighbors (Figure 5f, 6f,
7b). Such regions of distinct texture and intensity, if
isolated in the scene, will represent a rock. This
method is only effective for detecting small rocks, or
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big rocks at far ranges, that consist of a small
percentage of pixels in an image. Both geometry
and lighting affect small rocks the least, and in
the desert-like environment, similar to Mars’s
surface, compact small regions of uniform
intensity and color are good indicators of small
rock presence. Large rocks, on the other hand,
or rocks located close to the camera consist of
many non-isolated regions of uniform texture
and intensity. A simple method is used to
combine non-isolated uniform texture and
intensity regions (Figure 6f) into larger rock
regions. Different rock features are used to
segment larger rocks from the image.

Since rovers often have more then one camera
on-board, range information can be derived from
intensity information using disparity or pixel
displacement from left image to the right’.
Range—based obstacle avoidance is necessary
for autonomous navigation, and therefore we
can safely assume that range data is present on-
board. The MER rovers in '03, for example, will
rely on stereo range data for extended
autonomous traverses.

Range data is usually not available for each pixel
of original image. Some areas are be occluded
by larger rocks; others do not have enough
gradient information in them to calculate pixel
displacement (pixel displacement is calculated
through correlation techniques). Nevertheless,
large rocks generally have abundant gradient
information, assuring accurate range
calculations. In fact, the abundance of gradient
information in images in which a rock covers a
large portion of the image tends to cause the
intensity and texture based segmentation to fail
to isolate the large (Figure 6f). In this study, we
derive the height data (height for each pixel)
from the range information and define a rock in
the height image as a connected volume rising
sharply above its local background. But for the
recognition of smaller rocks height data usually
lacks resolution. Therefore, it is better to use
intensity-based  algorithms for small rock
detection and range-based algorithms to detect
large rocks.

In this section, the intensity-based algorithm that
detects small rocks in the image and the range-
based algorithm that detects larger rocks are
described. Examples were both algorithms are

symmetrically executed on the same images

combining (fusing) results, are presented.

Intensity based segmentation and rock detection

The main component of the intensity-based small
rock detection is the edge-flow segmentation
process'®. This process utilizes a predictive coding
model to identify the direction of change in color and
texture at each image location at a given scale, and
constructs an edge flow vector. The approach
facilitates the integration of different image attributes
such as color, texture and misleading discontinuities
into a single framework for boundary detection. The
algorithm first computes local edge energy and
estimates the corresponding flow direction. The local
edge energy is iteratevely propagated to its neighbor
if the edge flow of the corresponding neighbor points
in the similar direction. The edge energy stops
propagating to its neighbor if the corresponding
neighbor has an opposite direction of edge flow. In
this case, these two image locations have both their
edge flows pointing at each other indicating the
presence of a boundary between two pixels. After
the flow propagation reaches a stable state, all the
local edge energies will be accumulated at the
nearest boundaries.

The algorithm requires one significant control
parameter: image scale. It controls both the edge
energy computation and the local flow direction
estimation, so that only edges larger than the
specified scale are detected. For the purposes of
segmenting the image into small components, it is
safe to set image scale permanently to one small
number. Moreover, since we are aiming for a non-
parametric approach, this parameter must be set a
priori. We selected a constant image scale of 5, and
produce an image consisting of small regions
(primitive components) that are separated by
detected boundaries.

Although the edge-flow algorithm relies heavily on
texture and color information, it uses the direction of
change in these attributes to detect component
boundary. The algorithm produces smooth and
closed boundaries (Figure 5f, 6f, 7b), but it does not
consider the actual average values of texture and
intensity attributes within each primitive component
for the purpose of linking these components together
into larger regions. Therefore, the additional module
that links these components (Figure 3) is necessary
to separate large and mainly uniform background
from small rocks. :
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Figure 2. Intensity-based small region segmentation process.

The component linking module iteratively links
adjacent components together, starting with the
two components closest in intensity, if their
average intensity difference is less than a
specified threshold. Obviously, a linking
threshold is required by this module. This
threshold is surprisingly robust for small rock
detection. In our experiments we were able to
keep it constantly set to 10. Nevertheless, for
truly autonomous system this threshold must be
set automatically based on image information®.
One possible method to set this threshold is to
calculate the differences in intensity using the
histogram for all adjacent components and to
cluster them into two classes: one with smaller
differences (corresponding to regions which
must be linked), and another one with large
differences. These classes will be separated and
most of the adjacent regions in the image should
correspond to background and do not differ in
intensity. Automatic setting of linking threshold
has not been developed yet and is an immediate
goal for future development of the algorithm.

The general idea behind component pruning is to
cluster all components into two groups based on
some component attributes: rock surfaces and
background. An attribute intuitively imposed by the
algorithm and aimed at detecting small rocks in
desert-like background is size. Since the previous
module linked similar components together, the
background component is being linked into big
continuous regions, while differently textured rocks,
remain as small isolated regions. Ideally size
distributions should cluster into large and small, but
currently the size threshold is set manually mainly
because intensity-based algorithms are still used to
detect large rocks in smeared images.

The Edge-flow segmentation process can be viewed
as feature extraction and clustering acting on
elementary components: pixels, and producing
objects: boundary separated regions. Component
linking and pruning basically perform the functions of
clustering and feature extraction acting on a feature's
average intensity, derived from new elementary
components: boundary separated regions. This is
the hierarchical process. Final detected rocks are
used to produce an object map (Figure 5g, 6g, 7c),
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which can be used later in the symmetric
process of combining different maps.

Range-based segmentation and rock detection

While intensity information is readily available
from visual cameras, range infomation is derived
via measuring displacement of image pixels in
two images taken from different viewpoints.
Such displacement is measured by correlating
local visual information in two corresponding
images’. The range data is originally given in
Cartesian coordinate system (X-Y-Z coordinates
for each pixel). Such range measurements are
dominated by the horizontal distance to the
observed point, which is not explicity relevant to
rock detection. The information critical to rock
detection is the height of the rock above the
ground plane, since rocks are expected to be
higher than sand and general background.

Rock height information (Figure 5b, 6b) is
extracted from the range data (Figure 5a, 6a) by
fitting a least-squares plane (ground level) to the
range data and then calculating the distance
between each range point and the plane. Initially,
a plane is fitted into all given points (at coarser
resolution), then the error is calculated between
plane points and original points for every pixel.
The errors are assumed to be Gaussian-
distributed (reasonable assumption for relatively
flat terrain). Therefore, all outlier points located
further than three standard deviations from mean
are rejected (eliminated from point set), and the
plane is refitted using the reduce number of
points. The process is repeated until a small
number of points (not less then 100, for
example) remain in the set. To fit the plane
coefficients into the large set of points, the
Moore-Penrose Pseudoinverse® is used as
shown below. This pseudoinverse minimizes the
least squares error between the estimated plane
and the original points, while minimizing the
norm of the plane coefficient vector. The
method is very efficient, since it requires the
computation of inverse for only 3x3 matrix,
independent on number of points involved in the
fit. The method is as follows.

We assume a Cartesian representation of the
plane:C X, + C,Y + G Z +C, =0, and
assume the usage of range coordinates for N
pixels of the image. C,,C,,C, and C, are plain

coefficients and X,,Y,,Z. are coordinates of range
for pixel  i(i <N). The plane equation can be
rewrittenas: A X, + A, Y+ A4Z =-1,

where 4, =C/C,,4, =C,/C,4, =C,/C,. The
overall linear system is depicted in (Eq. 1)

X Y Z -1
Al
o 4, |= (Eq. 1)
Yool 1 G

The solution is given by

A=R"eU,

where R" is the Moore-Penrose pseudoinverse R.
In our problem, the number of points N is always
larger than the number of unknown plane coefficients
(3), therefore we use the full-column rank form of
Moore-Penrose pseudoinverse:

R"'=(R'eR) ' eR’ (Eq. 2)
Combining (Eq.1 and Eq 2) we get the plane
coefficients:

As=(RoR) " eR e U (Eq 3)

And the minimized Least Squares Error is given by
E, =lU~Re Al (Eq
4)

The resulting height image contains more accurate
rock-related information than range image (Figure

5ab, 6ab) and makes the overall rock-detection
process significantly more robust for all ranges.

Once the height data is obtained, in an ideal world,
one could theoretically detect rocks by selecting
connected regions over certain heights. But because
of the errors in ground plane calculation (at large
scale the ground is not necessarily planer) global

thresholds in height become unreliable. It is
necessary to use only relative heights which
preserve local ground to rock relationships. We bin

the heights through k-means segmentation® into a
moderately high number of K bins, and we analyze
the relationship between connected components of
the same height and their neighbors (Figure 5c, 6c).
At this stage, connected components of same
heights become elementary components for Rule-
based rock synthesis.
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Figure 4. Range-based large rock segmentation process.

The rock synthesis process is designed in such
a way, that the actual value of K is not important
as long as it is large. We permanently set the
value of K to 21. Note, if the K-means aigorithm
fails to converge, it means that there is not
enough variance in height data to spilit it into K
classes. Were this to occur, K can be
automatically set to lower number, but this
iteration may not be necessary, since non-
convergence also indicates inadequate range
data for the rock detection method using range
data. In this case, we are most likely observing
the scene at far range, and intensity-based
algorithms should be used.

The K-means segmentation process has an
interesting affect on the height data. This
process assumes Gaussian distributed classes,
but, in reality, only heights corresponding to
background are Gaussian distributed and fit well
into a few (ideally 1) k-means classes. We
naturally get few well-spread connected
components representing background (Figure
5¢, 6¢). The height distributions for rocks and
dips depend heavily on the perspective angle
and rock/dip shape. These distributions are
rarely Gaussian; therefore many more classes

are necessary to represent rocks (the K-means
algorithm approximates non-Gaussian distributions
by fitting large number of Gaussian clusters in it). As
a result we get heavily populated classes for
background, and lightly populated numerous classes
for rocks (Figure 5c¢, 6¢). Rocks appear as layers of
monotonically decreasing elementary components,
rising above wider spread background regions. From
a shallow perspective angles (or side view of the
rocks) elementary components representing rocks
appear as narrow elongated regions. For steep
perspective angles, as in a top down view, rock
sides appear to be much wider. In this manner, K-
means label map gives a view of regions topological
information, from which rocks can be extracted.

By moving from absolute height data to connected
components of same inter-region heights we gain
three significant advantages. First we obtain the
representation of the data where rocks exhibit a
unique signature. Second, we provide non-
parametric (assume K is always 21) data smoothing,
which eliminates small height variations. And finally
by replacing pixel data with larger connected regions
of similar internal height, we achieve significant data
reduction and algorithm speed-ups during rock

8

American Institute of Aeronautics and Astronautics



synthesis step. Now, rocks have to be built from
larger components rather than from individual
pixels.

The rock synthesis module (Figure 4) builds
rocks from elementary components by
examining only relative positions and heights of
topological regions. Shape-describing attributes
of topological regions such as elongation and

size are presently not used.
.| (outside _ perimeter)?
Elongation = , even
area

though an extremely valuable attribute for
shallow perspective angles, is not generally
reliable since it can vary greatly with perspective
changes. Size attribute is often a great
discriminant of background components, since
background classes are mostly the larger
populated classes in the image, but a size
discriminator fails if the background is heavily
populated by rocks or if we observe a group of
rocks at close view. In these cases the
background can be split into smaller regions. In
an attempt to achieve generality and parameter
independence we start by concentrating on only
relative (binary) height and position attributes
between components, such as higher or lower,
adjacent or non-adjacent. We use a number of
non-quantitative rules to describe rock height-
based signature and separate rocks from
background.  Three rules have been
implemented and others are under
consideration.

In order to describe the rules, a few definitions
must be made for clarity:

Neighbors — adjacent components in the image;
Lower neighbor — adjacent component of lower
height;

Tops - elementary components
neighbors are all of lesser height;

To point up — one component points up to
another component, if all intermediate neighbors
while moving from first component to the later
are monotonically increasing in heights;

Sides — adjacent components with monotonically
changing heights, that point up to the same set
of tops.

whose

With these definitions in mind the rules can be
stated:

1) If the component points to only one top,
then the top is the top of the rock and current
component is part of the same rock as top. This
rule uses the following topological characteristic

of the scene: if more then one local tops are
surrounded by same height region, this region tends
to represent background, and rock tops tend to be
tops of separate rocks.

2) If the component points up to more than one
top, but there exists a lower neighbor of this
component that points up to the same tops as a
component itself (that is if side exists), then these
tops and component represent the same rock.
Moreover, all the intermediate neighbors between
the component and the top are also part of the same
rock. This means that if a down-slope signature of a
surface is distinctly obvious, the surface must be
side of the rock.

3) The remaining regions are backgrounds.
These rules basically emphasize the tops and the
sides as unique rock signature characteristics.

The rock synthesis module outputs regions with
detected rocks. This is the current output of the
process and current final objects. In this output,
smaller classes of rocks are sometimes combined
into the same region, and often rock outlines are not
very accurate. The hierarchical implementation
allows further improvement on detected rocks. One
of our goals is to implement further segmentation of
rock regions into separate rocks, while improving on
rock outlines. This will be done in a rock shape-
verification module (currently not implemented). In
this module we plan to fit elliptic parabaloids into rock
regions, then calculate the error between the actual
rock surface and parabaloid. We hope that the
presence of continuous gradient in error will indicate
the boundary between two rocks in rock region. We
also assume that if the determined parabaloid
continues to fit height data beyond the outlines of the
rock region, such outlines should be extended.

The last module, the Rock Attribute Calculation
module currently calculates the attributes of rock
regions, such as average intensity, height, area,
compactness, later they will include parameters of
the fitted elliptic parabaloid, and possibly will provide
various texture attributes if requested by the
scientists. Such attributes will be used for rock
classification, which might integrate supervised
approaches and is beyond the scope of this article.

Fusion of intensity-based and range—based rock
detection results

Experimental results have shown that combining
intensity and range attributes for all-size rocks
detection early in the hierarchy generates
significantly more false alarms, and does not aid
detection rates significantly.  There are three
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reasons for this. The first one is that these two
algorithms are truly orthogonal in a sense that
intensity-based approaches usually succeed
where range —based approaches fail and vice
versa. This is happening because range data is
usually good when there is enough gradient
present in the data and the correlation results
are accurate. Same gradient interfere with
texture/intensity segmentation making it worst. If
images look smooth and blurred (low-frequency
image), rocks appear as blobs surrounded with
slowly-varying background and intensity-based
algorithms work well even for big rocks, while
range-based algorithms fail (inaccurate ranges).
On another hand, if good range information is
present for even smaller rocks, we use range for
rock detection, since range is generally more
reliable attribute of rocks. Therefore, good range
information takes precedence over intensity.

The other reason that the range and intensity
attributes are not currently fused early in the
hierarchy is the absence of well-corresponding
data, meaning that range data is often offset
away from real rock, especially near the
boundaries of the image (Observe the offset of
range-based detected rocks in the bottom left of
image in Figure 6h). In the future, if the
correspondence problem between range data
and intensity data is solved, we pian to combine
intensity and range information to improve
range-detected rock outlines. This can be
performed by extending rock outlines to the
boundary of overlapping intensity-based
elementary component.

Finally range information is often absent in parts
of an image, either because of the occlusions
produced by big rocks or because of insufficient
gradient to correlate pixels between the left and
right images. In addition range calculations can
not be performed near the boundaries of the
image because of the area required by
correlation window size and displacement
search region. Due to these reasons, we prefer
to fuse final detections of range-based and
intensity based algorithms (symmetric
approach). We use intensity-based algorithms
for small rock detection and range- based

algorithms for large rock detection (as described in
background section). But for some data sets
(example 3) intensity data is so smeared and far-
viewed, that range does not have enough resolution
to be useful. In other data sets (example 2) rocks are
imaged at such a close range, that small rock
detection does not add much to results.
Nevertheless, on many images (Example 1) both
small and large rocks are of interest. In these cases
we detect whatever size rocks we can detect with
range data, and then detect all the smaller rocks with
intensity data. If intensity and range-based
detections overlap, range-based detections always
take precedence over intensity-based detections.
The examples of this approach are demonstrated in
next section.

The overall symmetric framework (Figure 2b) of
fusing rock detection maps based on different data
features allows for easy plug in of additional object
maps based on different attributes and possibly
recognizing other types of rocks in new data. For
example, region compactness attribute

perimeter® | o .
= | is an excellent indicator of a region’s

area
structural texture. (In structural texture “texture
primitives” are detected and their arrangements are
used to generalize texture structures. Currently, we
are using statistical texture only: Gabor filters). The
compactness attribute might allow us to see shallow
smooth rocks on sandy granular background, even if
the rocks are same color as the sand. In this case
we would introduce a new object map and combine
final detections.

ALGORITHM PROCESSING EXAMPLES

In this section we demonstrate the performance of
rock detection algorithms on three examples. The
first two examples are real images of Mars surface
taken by Mars Pathfinder Rover. The rover had a
pair of cameras on-board (IMP or Imager for Mars
Pathfinder) for stereo imaging allowing range to be
generated from “Left eye/Right eye “ image pair. The
third example is taken from FIDO test. Although the
FIDO data contains both intensity and range
information, the range data lucks resolution and does
not contribute to the overall rock detection.
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a) Original range image

Example 1

This image contains both large and small rocks.
Range and intensity based algorithms  were
executed on this data, allowing the first process to
detect large rocks (Figure 5d) and second process
to detect small rocks (Figure 5g). The results of
both algorithms are combined automatically into
final detections (Figure 5h).

b) Extracted height ¢) Range-based d) Range-based
image elementary components rocks
- T i)

h) Final

rocks
Figure 5.  Rock
detection process
executed on Mars
Pathfinder image.
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e) Original Intensity f) Intensity-based g) Intensity-based
image elementary ¢ ents rocks

a) Original range image

This is a close view of rocks on MARS. At close
views, range data is especially good (even though it
is offset from the rocks near image-boundaries).
Range based algorithm takes precedence over
intensity-based algorithm and detects most of the
rocks in this image. Intensity based algorithms are
also ran on this data, even mostly tiny pebbles are
left for it to detect. Such small rocks probably do not
contribute much to science knowledge, and at very

close views intensity-based rocks can be generally
innnrad

b) Extracted height ¢) Range-based d) Range-based
Image elementary components rocks

g Ty,

h) Final
rocks

Figure 6. Rock detection process
executed on Mars Pathfinder image
taken at close range.
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e) Original Intensity f) Intensity-based g) Intensity-based
image lementary components rocks

basically does not contribute to final results.
Nevertheless the intensity-based rock detection
This image was taken on Earth at relatively far ~ works reasonable on this image (results are
range. It contains some vegetation and is presented in 7c).
blurred. The range data lacks resolution and

Exampie3

a) Original intensity : b) Intensity-based elementary
image components

Figure 7. Rock detection process
executed on Earth image.

¢) Intensity-based final rocks
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CONCLUSIONS AND FEASABILITY FOR ON-
BOARD IMPLEMINTATION

In this paper we introduced a general framework
for fully a automated rock detection process to
be wused on the surface of Mars, and
demonstrated the initial version of the process.
The process utilizes both symmetrical and
hierarchical approaches for feature extraction
and object recognition and is easily expandable
to more diverse data sets.

Implemented on-board a rover, the described
system could aid in deciding what information to
send back to Earth. One of the major
requirements imposed on our system s
feasibility and ease of on-board implementation.
At the level of algorithm development, three
issues must be addressed to justify the ease of
on-board implementation: fast execution time,
parameter  independence and  radiation
tolerance. Parameter independence was the
topic addressed in this paper. We demonstrated
the system that can detect rocks without
extensive training and with minimal use of
parameters. Specifically, only robust parameters
and parameters that can be set automatically
were used in this algorithm. In addition, the
presented algorithm is radiation tolerant and
cosmic noise resistant since the algorithm looks
at image components of larger sizes then normal
cosmic noise hits, and features tolerant to small
noise speckles are extracted from the image
regions. Generally, if features larger then cosmic
noise ray hits (which are usually few pixels large)
are of interest, cosmic noise can be successfully
removed by filtering out isolated small regions
from the image.

The current implementation of the rock detection
algorithm executes on a dual-processor Sparc
Ultra 60 in less then 2 minutes. We believe that
with optimal implementation of the algorithm and
with off-the shelf image processing hardware
and/or parallel hardware, real-time speeds will
be achieved, ensuring the feasibility of rock

detection system’s implementation on-board the
space-vehicle.

The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration.
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